Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti.

نویسندگان

  • L X Wang
  • Y Wang
  • B Pellock
  • G C Walker
چکیده

The production of succinoglycan by Sinorhizobium meliloti Rm1021 is required for successful nodule invasion by the bacterium of its host plant, alfalfa. Rm1021 produces succinoglycan, an acidic exopolysaccharide composed of an octasaccharide repeating unit modified with acetyl, succinyl, and pyruvyl moieties, in both low- and high-molecular-weight forms. Low-molecular-weight (LMW) succinoglycan, previously thought to consist of monomers, trimers, and tetramers of the repeating unit, has been reported as being capable of promoting the formation of nitrogen-fixing nodules by succinoglycan-deficient derivatives of strain Rm1021. We have determined that the three size classes of LMW succinoglycan species are in fact monomers, dimers, and trimers of the repeating unit and that the trimer is the species active in promoting nodule invasion. A detailed structural analysis of the components of LMW succinoglycan by using various chromatographic techniques, along with nuclear magnetic resonance analyses, has revealed that there is considerable heterogeneity within the LMW succinoglycan oligomers in terms of noncarbohydrate substitutions, and we have determined the structural basis of this heterogeneity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthetic control of molecular weight in the polymerization of the octasaccharide subunits of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti.

Succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti, is composed of polymerized octasaccharide subunits, each of which consists of one galactose and seven glucoses with succinyl, acetyl, and pyruvyl modifications. Production of specific low molecular weight forms of R. meliloti exported and surface polysaccharides, including succinoglycan, appears to be important fo...

متن کامل

Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides.

The soil bacterium Sinorhizobium meliloti is capable of entering into a nitrogen-fixing symbiosis with Medicago sativa (alfalfa). Particular low-molecular-weight forms of certain polysaccharides produced by S. meliloti are crucial for establishing this symbiosis. Alfalfa nodule invasion by S. meliloti can be mediated by any one of three symbiotically important polysaccharides: succinoglycan, EP...

متن کامل

Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021.

The detailed structure of the symbiotically important exopolysaccharide succinoglycan from Rhizobium meliloti Rm1021 was determined by mass spectrometry with electrospray ionization and collision-induced dissociation of the octameric oligosaccharide repeating unit. Previously undetermined locations of the succinyl and acetyl modifications were determined, in respect to both residue locations wi...

متن کامل

Function of Succinoglycan Polysaccharide in Sinorhizobium meliloti Host Plant Invasion Depends on Succinylation, Not Molecular Weight

UNLABELLED The acidic polysaccharide succinoglycan produced by the rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and establish a nitrogen-fixing symbiosis. S. meliloti mutants that cannot make succinoglycan cannot initiate invasion structures called infection threads in plant root hairs. S. meliloti exoH mutants that c...

متن کامل

The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression.

Quorum sensing, a population density-dependent mechanism for bacterial communication and gene regulation, plays a crucial role in the symbiosis between alfalfa and its symbiont Sinorhizobium meliloti. The Sin system, one of three quorum sensing systems present in S. meliloti, controls the production of the symbiotically active exopolysaccharide EPS II. Based on DNA microarray data, the Sin syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 21  شماره 

صفحات  -

تاریخ انتشار 1999